Neural Networks and Learning Machines by Simon Haykin: Used

AlibrisBooks
(472359)
Ingeschreven als zakelijke verkoper
US $119,11
OngeveerEUR 101,40
Objectstaat:
Goed
Laatste exemplaar2 verkocht
Populair object. Er zijn er al 2 verkocht.
Wees gerust. Retourzendingen worden geaccepteerd.
Verzendkosten:
Gratis Standard Shipping.
Bevindt zich in: Sparks, Nevada, Verenigde Staten
Levering:
Geschatte levering tussen do, 25 sep en wo, 1 okt tot 94104
Bij geschatte leveringsdatums - nieuw venster of tabblad wordt rekening gehouden met de verwerkingstijd van de verkoper, de postcode van de verzendlocatie, de postcode van de bestemming, en het moment van aanvaarding. Geschatte leveringsdatums zijn ook afhankelijk van de geselecteerde verzendservice en de ontvangst van de betalingbetaling ontvangen - nieuw venster of tabblad. De leveringstermijnen kunnen variëren, vooral gedurende piekperiodes.
Retourbeleid:
30 dagen om te retourneren. Koper betaalt voor retourzending Als u een eBay-verzendlabel gebruikt, wordt dit in mindering gebracht op het terugbetalingsbedrag.
Betalingen:
    Diners Club

Winkel met vertrouwen

Geld-terug-garantie van eBay
Ontvang het object dat u hebt besteld of krijg uw geld terug. Meer informatieGeld-terug-garantie van eBay - nieuw venster of tabblad
De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
eBay-objectnummer:364051997029
Laatst bijgewerkt op 20 sep 2025 15:18:47 CESTAlle herzieningen bekijkenAlle herzieningen bekijken

Specificaties

Objectstaat
Goed: Een boek dat is gelezen, maar zich in goede staat bevindt. De kaft is zeer minimaal beschadigd ...
Book Title
Neural Networks and Learning Machines
Publication Date
2008-06-01
Edition Number
3
Pages
936
ISBN
9780131471399

Over dit product

Product Identifiers

Publisher
Pearson Education
ISBN-10
0131471392
ISBN-13
9780131471399
eBay Product ID (ePID)
57081383

Product Key Features

Number of Pages
936 Pages
Language
English
Publication Name
Neural Networks and Learning Machines
Subject
Neural Networks, Electrical
Publication Year
2008
Type
Textbook
Author
Simon Haykin
Subject Area
Computers, Technology & Engineering
Format
Hardcover

Dimensions

Item Height
2 in
Item Weight
47.4 Oz
Item Length
9.5 in
Item Width
7.3 in

Additional Product Features

Edition Number
3
Intended Audience
College Audience
LCCN
2008-034079
Dewey Edition
22
Illustrated
Yes
Dewey Decimal
006.32
Synopsis
For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists. Matlab codes used for the computer experiments in the text are available for download at: http: //www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently. ", For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Renowned for its thoroughness and readability, this well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently., For graduate-level neural network courses offered in the departments of Computer Engineering, Electrical Engineering, and Computer Science. Neural Networks and Learning Machines, Third Edition is renowned for its thoroughness and readability. This well-organized and completely up-to-date text remains the most comprehensive treatment of neural networks from an engineering perspective. This is ideal for professional engineers and research scientists. Matlab codes used for the computer experiments in the text are available for download at: http://www.pearsonhighered.com/haykin/ Refocused, revised and renamed to reflect the duality of neural networks and learning machines, this edition recognizes that the subject matter is richer when these topics are studied together. Ideas drawn from neural networks and machine learning are hybridized to perform improved learning tasks beyond the capability of either independently., Fluid and authoritative, this well-organized book represents the first comprehensive treatment of neural networks and learning machines from an engineering perspective, providing extensive, state-of-the-art coverage that will expose readers to the myriad facets of neural networks and help them appreciate the technology's origin, capabilities, and potential applications. KEY TOPICS: Examines all the important aspects of this emerging technology, covering the learning process, back propogation, radial basis functions, recurrent networks, self-organizing systems, modular networks, temporal processing, neurodynamics, and VLSI implementation. Integrates computer experiments throughout to demonstrate how neural networks are designed and perform in practice. Chapter objectives, problems, worked examples, a bibliography, photographs, illustrations, and a thorough glossary all reinforce concepts throughout. New chapters delve into such areas as support vector machines, and reinforcement learning/neurodynamic programming, Rosenblatt's Perceptron, Least-Mean-Square Algorithm, Regularization Theory, Kernel Methods and Radial-Basis function networks (RBF), and Bayseian Filtering for State Estimation of Dynamic Systems. An entire chapter of case studies illustrates the real-life, practical applications of neural networks. A highly detailed bibliography is included for easy reference. MARKET: For professional engineers and research scientists. Matlab codes used for the computer experiments in the text are available for download at: http: //www.pearsonhighered.com/haykin/
LC Classification Number
QA76.87

Objectbeschrijving van de verkoper

Informatie van zakelijke verkoper

Ik verklaar dat al mijn verkoopactiviteiten zullen voldoen aan alle wet- en regelgeving van de EU.
Over deze verkoper

AlibrisBooks

98,7% positieve feedback2,0M objecten verkocht

Lid geworden op mei 2008
Reageert meestal binnen 24 uur
Ingeschreven als zakelijke verkoper
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
Meer weergeven

Gedetailleerde verkopersbeoordelingen

Gemiddelde van de afgelopen 12 maanden
Nauwkeurige beschrijving
4.9
Redelijke verzendkosten
5.0
Verzendtijd
5.0
Communicatie
5.0

Feedback verkoper (525.407)

Alle feedback weergeven