Hebt u iets om te verkopen?

Python Machine Learning By Example Fourth (4th) Edition By Liu Expert Insight

topnvdeals
(1380)
Geregistreerd als particuliere verkoper
Voorschriften voor consumentenbescherming die voortvloeien uit Europese consumentenwetgeving, zijn derhalve niet van toepassing. eBay-kopersbescherming geldt nog steeds voor de meeste aankopen.
US $36,50
OngeveerEUR 31,15
Objectstaat:
Heel goed
Snel, anders bent u te laat. 1 persoon volgt dit object.
Verzendkosten:
US $5,97 (ongeveer EUR 5,09) USPS Media MailTM.
Bevindt zich in: Las Vegas, Nevada, Verenigde Staten
Levering:
Geschatte levering tussen wo, 27 aug en vr, 29 aug tot 94104
De levertijd wordt geschat met onze eigen methode op basis van onder meer de nabijheid van de koper ten opzichte van de objectlocatie, de geselecteerde verzendservice, en de verzendgeschiedenis van de verkoper. De leveringstermijnen kunnen variëren, vooral gedurende piekperiodes.
Retourbeleid:
Geen retourzendingen geaccepteerd.
Betalingen:
    Diners Club

Winkel met vertrouwen

Geld-terug-garantie van eBay
Ontvang het object dat u hebt besteld of krijg uw geld terug. Meer informatieGeld-terug-garantie van eBay - nieuw venster of tabblad
De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
eBay-objectnummer:205399087497

Specificaties

Objectstaat
Heel goed: Een boek dat er niet als nieuw uitziet en is gelezen, maar zich in uitstekende staat ...
Brand
Packt Publishing
Binding
TP
EAN
9781835085622
ISBN
1835085628
Book Title
Python Machine Learning By Example - Fourth Editio
Item Height
1.04
Manufacturer
Packt Publishing
Item Weight
1.94

Over dit product

Product Identifiers

Publisher
Packt Publishing, The Limited
ISBN-10
1835085628
ISBN-13
9781835085622
eBay Product ID (ePID)
14069428426

Product Key Features

Number of Pages
Xxiii, 491 Pages
Language
English
Publication Name
Python Machine Learning by Example : Unlock Machine Learning Best Practices with Real-World Use Cases
Subject
Machine Theory, Software Development & Engineering / Tools, Mathematical & Statistical Software, General
Publication Year
2024
Type
Textbook
Subject Area
Computers, Science
Author
Not Available
Format
Trade Paperback

Dimensions

Item Length
92.5 in
Item Width
75 in

Additional Product Features

Intended Audience
Trade
Dewey Edition
23
Illustrated
Yes
Dewey Decimal
006.31
Synopsis
Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas.Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free Key Features Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions Implement ML models, such as neural networks and linear and logistic regression, from scratch Book Description The fourth edition of Python Machine Learning By Example is a comprehensive guide for beginners and experienced machine learning practitioners who want to learn more advanced techniques, such as multimodal modeling. Written by experienced machine learning author and ex-Google machine learning engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for machine learning engineers, data scientists, and analysts.Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You'll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine.This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide. What you will learn Follow machine learning best practices throughout data preparation and model development Build and improve image classifiers using convolutional neural networks (CNNs) and transfer learning Develop and fine-tune neural networks using TensorFlow and PyTorch Analyze sequence data and make predictions using recurrent neural networks (RNNs), transformers, and CLIP Build classifiers using support vector machines (SVMs) and boost performance with PCA Avoid overfitting using regularization, feature selection, and more Who this book is for This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project. ]]>, Author Yuxi (Hayden) Liu teaches machine learning from the fundamentals to building NLP transformers and multimodal models with best practice tips and real-world examples using PyTorch, TensorFlow, scikit-learn, and pandas Key Features: - Discover new and updated content on NLP transformers, PyTorch, and computer vision modeling - Includes a dedicated chapter on best practices and additional best practice tips throughout the book to improve your ML solutions - Implement ML models, such as neural networks and linear and logistic regression, from scratch - Purchase of the print or Kindle book includes a free PDF copy Book Description: The fourth edition of Python Machine Learning by Example is a comprehensive guide for beginners and experienced ML practitioners who want to learn more advanced techniques like multimodal modeling. Written by experienced machine learning author and ex-Google ML engineer Yuxi (Hayden) Liu, this edition emphasizes best practices, providing invaluable insights for ML engineers, data scientists, and analysts. Explore advanced techniques, including two new chapters on natural language processing transformers with BERT and GPT, and multimodal computer vision models with PyTorch and Hugging Face. You'll learn key modeling techniques using practical examples, such as predicting stock prices and creating an image search engine. This hands-on machine learning book navigates through complex challenges, bridging the gap between theoretical understanding and practical application. Elevate your machine learning and deep learning expertise, tackle intricate problems, and unlock the potential of advanced techniques in machine learning with this authoritative guide. What You Will Learn: - Follow machine learning best practices across data preparation and model development - Build and improve image classifiers using Convolutional Neural Networks (CNNs) and transfer learning - Develop and fine-tune neural networks using TensorFlow and PyTorch - Analyze sequence data and make predictions using RNNs, transformers, and CLIP - Build classifiers using SVMs and boost performance with PCA - Avoid overfitting using regularization, feature selection, and more Who this book is for: This expanded fourth edition is ideal for data scientists, ML engineers, analysts, and students with Python programming knowledge. The real-world examples, best practices, and code prepare anyone undertaking their first serious ML project. Table of Contents - Getting Started with Machine Learning and Python - Building a Movie Recommendation Engine - Predicting Online Ad Click-Through with Tree-Based Algorithms - Predicting Online Ad Click-Through with Logistic Regression - Predicting Stock Prices with Regression Algorithms - Predicting Stock Prices with Artificial Neural Networks - Mining the 20 Newsgroups Dataset with Text Analysis Techniques - Discovering Underlying Topics in the Newsgroups Dataset with Clustering and Topic Modeling - Recognizing Faces with Support Vector Machine - Machine Learning Best Practices - Categorizing Images of Clothing with Convolutional Neural Networks - Making Predictions with Sequences Using Recurrent Neural Networks - Advancing Language Understanding and Generation with Transformer Models - Building An Image Search Engine Using Multimodal Models - Making Decisions in Complex Environments with Reinforcement Learning
LC Classification Number
Q325.5.L5 2024

Objectbeschrijving van de verkoper

Over deze verkoper

topnvdeals

100% positieve feedback4,9K objecten verkocht

Lid geworden op aug 2006
Reageert meestal binnen 24 uur
Geregistreerd als particuliere verkoperDus de consumentenrechten die voortvloeien uit EU-wetgeving voor consumentenbescherming zijn niet van toepassing. eBay-kopersbescherming geldt nog steeds voor de meeste aankopen.

Gedetailleerde verkopersbeoordelingen

Gemiddelde van de afgelopen 12 maanden
Nauwkeurige beschrijving
4.9
Redelijke verzendkosten
4.9
Verzendtijd
5.0
Communicatie
5.0

Feedback verkoper (1.300)

Alle beoordelingen
Positief
Neutraal
Negatief