Hands–On Machine Learning with Scikit–Learn and TensorFlow - Geron, Aurelien

Next Chapter in the Journey
(2039)
Ingeschreven als zakelijke verkoper
US $29,99
OngeveerEUR 25,53
of Beste voorstel
Objectstaat:
Nieuw
Een goed doel steunen was nog nooit zo de moeite waard. Deze verkoop steunt een goed doel.
Verzendkosten:
US $6,72 (ongeveer EUR 5,72) USPS Media MailTM.
Bevindt zich in: Fairfield, Connecticut, Verenigde Staten
Levering:
Geschatte levering tussen do, 25 sep en ma, 29 sep tot 94104
De levertijd wordt geschat met onze eigen methode op basis van onder meer de nabijheid van de koper ten opzichte van de objectlocatie, de geselecteerde verzendservice, en de verzendgeschiedenis van de verkoper. De leveringstermijnen kunnen variëren, vooral gedurende piekperiodes.
Retourbeleid:
Geen retourzendingen geaccepteerd.
Betalingen:
    Diners Club

Winkel met vertrouwen

Geld-terug-garantie van eBay
Ontvang het object dat u hebt besteld of krijg uw geld terug. Meer informatieGeld-terug-garantie van eBay - nieuw venster of tabblad
De verkoper neemt de volledige verantwoordelijkheid voor deze aanbieding.
eBay-objectnummer:156969033292
Laatst bijgewerkt op 15 jun 2025 00:00:18 CESTAlle herzieningen bekijkenAlle herzieningen bekijken

10% van de verkoop van dit object komt ten goede aan The Unexpected Journey, Inc.

We connect People with Traumatic Brain Injury and Give them Hope
  • Officiële aanbieding van eBay for Charity Meer weten?
  • Deze verkoop is ten voordele van een goedgekeurde non-profitorganisatie.

Specificaties

Objectstaat
Nieuw: Een nieuw, ongelezen en ongebruikt boek in perfecte staat waarin geen bladzijden ontbreken of ...
Book Title
Hands–On Machine Learning with Scikit–Learn and TensorFlow
Genre
Machine learning
ISBN
9781491962299

Over dit product

Product Identifiers

Publisher
O'reilly Media, Incorporated
ISBN-10
1491962291
ISBN-13
9781491962299
eBay Product ID (ePID)
227662629

Product Key Features

Number of Pages
572 Pages
Publication Name
Hands-On Machine Learning with Scikit-Learn and TensorFlow : Concepts, Tools, and Techniques to Build Intelligent Systems
Language
English
Publication Year
2017
Subject
Intelligence (Ai) & Semantics, Data Processing, Computer Vision & Pattern Recognition
Type
Textbook
Subject Area
Computers
Author
Aurélien Géron
Format
Trade Paperback

Dimensions

Item Height
1.1 in
Item Weight
34.8 Oz
Item Length
9.2 in
Item Width
7.1 in

Additional Product Features

Intended Audience
Trade
LCCN
2018-418542
Illustrated
Yes
Synopsis
Graphics in this book are printed in black and white . Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--scikit-learn and TensorFlow--author Aur lien G ron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details, Graphics in this book are printed in black and white . Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks--scikit-learn and TensorFlow--author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details
LC Classification Number
Q325.5

Objectbeschrijving van de verkoper

Informatie van zakelijke verkoper

Ik verklaar dat al mijn verkoopactiviteiten zullen voldoen aan alle wet- en regelgeving van de EU.
Over deze verkoper

Next Chapter in the Journey

100% positieve feedback5,9K objecten verkocht

Lid geworden op mrt 2019
Reageert meestal binnen 24 uur
Ingeschreven als zakelijke verkoper
Welcome to Our eBay Store: Next Chapter in the JourneyWith each purchase, you're supporting individuals with Traumatic Brain Injuries (TBI). Part of every sale goes to our non-profit, "The Unexpected ...
Meer weergeven

Gedetailleerde verkopersbeoordelingen

Gemiddelde van de afgelopen 12 maanden
Nauwkeurige beschrijving
5.0
Redelijke verzendkosten
4.9
Verzendtijd
5.0
Communicatie
5.0

Feedback verkoper (2.184)

Alle beoordelingen
Positief
Neutraal
Negatief